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Research Group and Areas

Intersection of 
Research Areas 

Machine Learning

Cyber-Physical and 
Real-Time Systems

Programming 
Languages and 

Compilers

�<?>

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)
Patterns p ::= sym :⌧ | x@x | lift x :⌧

�<?>L (extends �<?>)

Expressions e + = e@ e | lift e :⌧

Figure 4: Abstract syntax of �<?> and �<?>L .

To formalize the static and dynamic semantics, as well proving soundness property
of the language, we present three different intermediate languages. The language �<?>

is the source language corresponding to the essential core of Modelyze. We define a
translation from �<?> to an intermediate language �<?>L that lifts selected expressions
into symbolic expressions (Section 3.3). The reason for symbolic lifting is, as dis-
cussed in the previous chapter, to create data structures of equations that can later be
inspected and analyzed. Both �<?> and �<?>L are gradually typed languages, that is, they
mix static and dynamic typing. The dynamic aspect is made explicit through a cast
insertion translation into another intermediate language �<?>LC (Section 3.4). We present
an operational semantics for �<?>LC and prove that the translations between the inter-
mediate languages are type preserving. We prove the usual progress and preservation
lemmas for �<?>LC , from which we obtain type safety for �<?> (Section 3.5).

3.1. Syntax
The abstract syntax for �<?> is defined in Figure. 4. The meta-variables x and y range
over variables, taken from some countable set of names X. The meta-variable e ranges
over the set of expressions Expr and ⌧ ranges over the set of types Types . We use sub-
scripts to create different meta-variables, e.g., e1 and e2 are two different metavariables
that range over expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e and delays the
execution of e until the abstraction is applied to an argument. The expression e1 e2 is
an application and c 2 C is a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used to signal cast and pattern match errors.

There are two new kinds of expressions in �<?>. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, p, et, ef ) eliminates
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Cyber-Physical and Real-Time Systems

Autonomous 
Vehicles

Smart Industrial  
Automation

Satellites Container Automation

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Real-time systems, 
running on 
embedded 
platforms

mailto:dbro@kth.se


David Broman, KTH Royal Institute of Technology, dbro@kth.se

Timing is not part of the software semantics  

Programming 
Model

Timing Dependent on the 
Hardware Platform 

Make time an abstraction within the 
programming model 

Traditional Approach 

Programming 
Model

Our Objective 

Timing is independent of the hardware 
platform (within certain constraints) 

Programming Model and Time
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Programming with Time: 
Design Objectives and Challenges

Simplicity

Portability

Correctness

Concise and Expressive

Avoid a lot of boilerplate code

Timing portability

Satisfy timing constraints
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MIniature STudent Satellite (MIST)

• 3U Cubesat (≤ 4 kg). 
• Sven Grahn (Project Leader) 

Christer Fuglesang (KTH Space Center)  
• Built by students at KTH 
• 7 scientific experiments on board 
• On-board computer (OBC) coordinates 

experiments and communicates with the  
ground station on earth.
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Motivation for Timing Portability

OBC flight software
Flight qualified OBC hardware (iOBC)

Raspberry Pi

exp2 exp7exp1
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State of The Art

• Synchronous languages (Lustre, Esterel, Singal). SCADE commercial success. 
• Timed research frameworks (PTIDES and Giotto) 
• Modeling languages (Modelica, UML MARTE, Simulink, Ptolemy, Labview etc.) 
• Formalisms for verification (Process algebras with time, Timed Automata etc.) 
• Automation (PLC standard IEC 61131-3, e.g. structured text) 
• Other specialized languages (Real-Time Euclide and PEARL)

Real-time extension  
to Java (RTJS)

• Direct primitives for 
Real-time 

• Instances of special 
classes 
(RealtimeThread) 

Ada

• Direct primitives for 
Real-time  

• Delay primitives 
(delay, 
delay_until) 

• Firm deadlines using  
select-abort and 
use of interrupts

C language
• C programs using RTOS APIs 

(e.g. FreeRTOS, VxWorks) 
• Arduino programs (Qduino) 
• Real-time concurrent C 
• Real-time POSIX C 

• Pthreads 
• clock_nanosleep 
• timers

Expressive but 
verbose

Safety 
Critical

Safety 
Critical

Simple but  
limited

Commodity 
Real-Time
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Simplicity and Correctness? (Arduino)

void loop() { 
  sense();
  compute();
  actuate();
  delay(40); 
}

A naïve implementation of a 
periodic loop in Arduino. What is 
the problem with this approach?

There is a drift.

S

0
ms

20 40 60 80 100 120

C A D
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Simplicity and Correctness? (POSIX C)E. Real-Time POSIX C
Fig. 20 lists a Real-Time POSIX program that implements
a periodic loop with firm deadlines. The periodic release
of the task is programmed using clock_nanosleep at
line 48. The firm timing requirement is implemented using a
timer, signal, sigsetjmp, and siglongjmp. On a deadline
overshoot, the timer interrupt handler executes the callback
function timer_signal_handler. Time in POSIX is
represented as struct timespec. Note that the functions
convert_to_timespec (line 19) and add_timespec
(line 34) are user-define functions, defined outside this listing.

F. Arduino
The following code shows an Arduino program that imple-
ments a periodic loop with firm deadlines. The periodic release
of the task is programmed using loop at line 14.
1:#include <setjmp.h>
2:#include "DueTimer.h"
3:jmp_buf env;
4:unsigned long tinit = 0;
5:volatile int timer_interrupt = 0;
6:void callback(){
7: timer_interrupt = 1;
8:}
9:void setup(){
10: Timer3.setPeriod(30000);//30ms
11: Timer3.attachInterrupt(callback);
12: Timer3.start();
13:}
14:void loop() {
15: int i=0;
16: tinit = millis();
17: i = setjmp(env);
18: if(i == 0){
19: sense();//read from sensor

20: }
21: Timer3.stop();
22: timer_interrupt = 0;
23: delay(30 - (millis() - tinit));
24: Timer3.start();
25:}

G. Table Summarizing Timed C primitives
Timed C constructs Functionality

sdelay(expr, n),
stp(expr1, expr2, n) soft timing point

fdelay(expr, n),
ftp(expr1, expr2, n) firm timing point

gettime(n) returns the absolute time

task creates a concurrent task

lvchannel
multilvchannel latest value channel

fifochannel
multififochannel FIFO channel

cread(chn, data) read from channel

cwrite(chn, data) write to channel

spolicy(policy) specifies scheduling policy

sprioity(priority) specifies priority as an integer

aperiodic(value,n) period of an aperiodic task

1: /*Code using POSIX API*/

2:int waiting_for_signal;
3:jmp_buf env;
4:void timer_signal_handler(int sig, siginfo_t*

extra, void* cruft){
5: if(waiting_for_signal == 1){
6: siglongjmp(env, 3);
7: }
8: waiting_for_signal = 0;
9:}
10:void main(){
11: struct timespec start_time, interval_timespec;
12: long interval;
13: char* unit;
14: int ret_jmp;
15: struct itimerspec i;
16: struct sigaction sa;
17: struct sigevent timer_event;
18: timer_t mytimer;
19: convert_to_timespec(&interval_timespec,3,"ms");
20: sa.sa_flags = SA_SIGINFO;
21: sa.sa_sigaction = timer_signal_handler;
22: if(sigaction(SIGRTMIN, &sa, NULL) < 0){
23: perror("sigaction");
24: exit(0);
25: }
26: timer_event.sigev_notify = SIGEV_SIGNAL;
27: timer_event.sigev_signo = SIGRTMIN;
28: timer_event.sigev_value.sival_ptr=(void*)&

mytimer;
29: if(timer_create(CLOCK_REALTIME,&timer_event,&

mytimer)<0){
30: perror("timer_create");
31: exit(0);
32: }
33: clock_gettime(CLOCK_REALTIME,&start_time);
34: add_timespec(&(i.it_value ), start_time,

interval_timespec);
35: i.it_interval.tv_sec = 0;
36: i.it_interval.tv_nsec = 0;
37: if(timer_settime(mytimer, TIMER_ABSTIME, &i,

NULL) < 0 ){
38: perror("timer_setitimer");
39: exit(0);
40: }
41: while(1){
42: ret_jmp = sigsetjmp(env, 1);
43: waiting_for_signal = 1;
44: if(ret_jmp == 0){
45: sense(); //read from sensor

46: }
47: waiting_for_signal = 0;
48: clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME

,&i.it_value, NULL);
49: add_timespec(&(i.it_value ), i.it_value,

interval_timespec);
50: i.it_interval.tv_sec = 0;
51: i.it_interval.tv_nsec = 0;
52: timer_settime(mytimer, TIMER_ABSTIME, &i,

NULL);
53: }
54:}

Fig. 20: A Real-Time POSIX C program implementing a
periodic loop with firm deadlines.

E. Real-Time POSIX C
Fig. 20 lists a Real-Time POSIX program that implements
a periodic loop with firm deadlines. The periodic release
of the task is programmed using clock_nanosleep at
line 48. The firm timing requirement is implemented using a
timer, signal, sigsetjmp, and siglongjmp. On a deadline
overshoot, the timer interrupt handler executes the callback
function timer_signal_handler. Time in POSIX is
represented as struct timespec. Note that the functions
convert_to_timespec (line 19) and add_timespec
(line 34) are user-define functions, defined outside this listing.

F. Arduino
The following code shows an Arduino program that imple-
ments a periodic loop with firm deadlines. The periodic release
of the task is programmed using loop at line 14.
1:#include <setjmp.h>
2:#include "DueTimer.h"
3:jmp_buf env;
4:unsigned long tinit = 0;
5:volatile int timer_interrupt = 0;
6:void callback(){
7: timer_interrupt = 1;
8:}
9:void setup(){
10: Timer3.setPeriod(30000);//30ms
11: Timer3.attachInterrupt(callback);
12: Timer3.start();
13:}
14:void loop() {
15: int i=0;
16: tinit = millis();
17: i = setjmp(env);
18: if(i == 0){
19: sense();//read from sensor

20: }
21: Timer3.stop();
22: timer_interrupt = 0;
23: delay(30 - (millis() - tinit));
24: Timer3.start();
25:}

G. Table Summarizing Timed C primitives
Timed C constructs Functionality

sdelay(expr, n),
stp(expr1, expr2, n) soft timing point

fdelay(expr, n),
ftp(expr1, expr2, n) firm timing point

gettime(n) returns the absolute time

task creates a concurrent task

lvchannel
multilvchannel latest value channel

fifochannel
multififochannel FIFO channel

cread(chn, data) read from channel

cwrite(chn, data) write to channel

spolicy(policy) specifies scheduling policy

sprioity(priority) specifies priority as an integer

aperiodic(value,n) period of an aperiodic task

1: /*Code using POSIX API*/

2:int waiting_for_signal;
3:jmp_buf env;
4:void timer_signal_handler(int sig, siginfo_t*

extra, void* cruft){
5: if(waiting_for_signal == 1){
6: siglongjmp(env, 3);
7: }
8: waiting_for_signal = 0;
9:}
10:void main(){
11: struct timespec start_time, interval_timespec;
12: long interval;
13: char* unit;
14: int ret_jmp;
15: struct itimerspec i;
16: struct sigaction sa;
17: struct sigevent timer_event;
18: timer_t mytimer;
19: convert_to_timespec(&interval_timespec,3,"ms");
20: sa.sa_flags = SA_SIGINFO;
21: sa.sa_sigaction = timer_signal_handler;
22: if(sigaction(SIGRTMIN, &sa, NULL) < 0){
23: perror("sigaction");
24: exit(0);
25: }
26: timer_event.sigev_notify = SIGEV_SIGNAL;
27: timer_event.sigev_signo = SIGRTMIN;
28: timer_event.sigev_value.sival_ptr=(void*)&

mytimer;
29: if(timer_create(CLOCK_REALTIME,&timer_event,&

mytimer)<0){
30: perror("timer_create");
31: exit(0);
32: }
33: clock_gettime(CLOCK_REALTIME,&start_time);
34: add_timespec(&(i.it_value ), start_time,

interval_timespec);
35: i.it_interval.tv_sec = 0;
36: i.it_interval.tv_nsec = 0;
37: if(timer_settime(mytimer, TIMER_ABSTIME, &i,

NULL) < 0 ){
38: perror("timer_setitimer");
39: exit(0);
40: }
41: while(1){
42: ret_jmp = sigsetjmp(env, 1);
43: waiting_for_signal = 1;
44: if(ret_jmp == 0){
45: sense(); //read from sensor

46: }
47: waiting_for_signal = 0;
48: clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME

,&i.it_value, NULL);
49: add_timespec(&(i.it_value ), i.it_value,

interval_timespec);
50: i.it_interval.tv_sec = 0;
51: i.it_interval.tv_nsec = 0;
52: timer_settime(mytimer, TIMER_ABSTIME, &i,

NULL);
53: }
54:}

Fig. 20: A Real-Time POSIX C program implementing a
periodic loop with firm deadlines.

Same, but with  
firm deadline
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Timed C – A Timed Extension to C

task foo(){   
  while(1){
    sense();
    compute();
    actuate();    
    fdelay(40, ms); 
  } 
} 

S

0
ms

20 40 60 80 100 120

C A D S C DS C A

Delay, but not more 
than to 40ms

Simplicity Portability Correctness

As simple as 
Arduino

Source-to-
source compiler. 
Different target 
RTOSs

Timing verification 
(End-to-end tool chain)

Interrupt if overrun 
(critical section is 
coming up)

https://github.com/timed-c/
Open Source

Natarajan and Broman  (RTAS 2018)
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Firm delay revisited

Initialize computation

Compute a new,  
improved value

Protect copying using 
critical section

Firm delay. Note, 
outside while loop

1:void main(){
2: unsigned int ov;
3: while(1){
4: sense();
5: ov = sdelay(60, ms);
6: while(ov > 0){
7: ov=sdelay(60-ov%60, ms);
8: }
9: }
10:}

L3

L4

L5

L6

L7

L2

Fig. 3: A function implementing a periodic loop using
sdelay, illustrating an error handling mechanism that en-
sures that the overshoot is compensated to make it stay in
phase.

1:int main(){
2: long tcomp, tnow;
3: tcomp = actuateAtTime();
4: tnow = gettime(sec);
5: sdelay(tcomp - tnow, sec);
6: actuate();
7:}

Fig. 4: A function implementing a delay until a specified
absolute time using gettime.

this time critical computation should be aborted. We introduce
firm timing points to handle this type of timing requirement.
Firm timing points are specified using the keyword fdelay,
as shown in the following statement:

fdelay(expr, n)

Similar to the behavior of sdelay, fdelay also introduces
a delay relative to the previous timing point. In addition to
enforcing a lower bound, fdelay also ensures an upper
bound. For example, in Fig. 5, suppose main starts at t = 0.
In the first iteration of the while loop, suppose sense

1:void main(){
2: while(1){
3: sense();
4: fdelay(30, ms);
5: }
6:}

Fig. 5: A simple periodic loop using the fdelay construct.

completes at t = 15. Then fdelay delays until t = 30.
However, in the second iteration at t = 60, fdelay interrupts
the execution of function sense, and passes the control to the
next iteration directly after the declared fdelay statement.

In some cases, interrupting a computation may lead to
undesirable or incomplete results. In order to ensure that
such computations are not interrupted by an fdelay, we
introduce the language primitive critical. We illustrate
the use of critical in Fig. 6. Anytime algorithms are a
class of algorithms that initially compute a suboptimal solution
and as time passes, the quality of the solution is improved
[36]. The language primitives fdelay and critical can
be used to implement an anytime algorithm, as illustrated in
Fig. 6. The function computePath is assumed to compute
a path for navigation. A feasible, but suboptimal path is
computed by initialize. Function computeAnytime
is assumed to improve the result, by reading from a and
writing to b. Now, suppose computePath started at t = 0
and computeAnytime completes at t = 90. If memcpy
(copying from b to a) is still executing at t = 100, then
the interrupt is delayed until the execution exits from the
critical section. The figure shows a 20 ms delay because of the
critical section, but the actual timing is by design application
dependent.

1:void computePath(int* a){
2: int b[100];
3: initialize(a);
4: while(1){
5: computeAnytime(b, a);
6: critical{
7: memcpy(a, b, 100);
8: }
9: }
10: fdelay(100, ms);
11:}

Fig. 6: A function implementing an anytime algorithm by
using fdelay and critical.

In Timed C, nested timing points can be programmed using
function calls. In the example below, compute imposes an
inner timing constraint within the outer timing constraint of
main. Here, if compute is still executing 50 ms after its
start, the fdelay at line 8 interrupts its execution.

1:void compute(){
2: control();
3: sdelay(30, ms);
4:}
5:void main(){
6: int a;
7: compute();
8: fdelay(50, ms);
9:}
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Weakly Hard Real-time Systems

(m,k) model

Soft Deadline

Run to completion,  
utility even if overrun

Firm Deadline

No utility if overrun, 
Abort execution at 
deadline

Hard Deadline

Deadlines must not 
be missed

Weakly Hard Real-Time Deadlines

m number of  
deadline misses

in a k window

Originally by Bernat, et al. (2001)

Idea: (m,k) - Sensitivity Analysis  
To find the strongest still-satisfied (m, k) 
constraint (or general weakly-hard 
constraint). 

(Original definition, m is the 
number of met deadlines)
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(m,k) Sensitivity Analysis

Given a window size of (k)

Find all WCET scaling factors 
where m inverse changes

Alpha 
value 
1.11 
1.25 
2.30

WCET  
Margin 
11% 
25% 
130%

Total misses 
(sum of tasks) 
0 
1 
2

Example

Instrumentation

Timing Analysis (Section III)

Timed C

Code

Execute

on target

platform

Timing

traces

Job set
Job set

generator

Instrumented

Code

Schedulability

Test

Schedulability 

      result

Sensitivity

Analysis

Not schedulable

Schedulable with 

  WCET margins

Sensitivity Analysis (Section V)

Schedulability Analysis (Section IV)

Fig. 1: Overview of the proposed end-to-end toolchain for Timed C. The overall methodology and toolchain consists of three main parts: a
measurement-based WCET analysis that automatically instruments and profiles the real-time program on the target platform (Section III), an
exact schedualbility analysis (Section IV), followed by a sensitivity analysis (Section V), which iteratively searches for boundaries in the
space of task set parameters for which the system exhibits a varying number of deadline misses.

translates to “plain” C) that allows for dynamic execution-time
measurements (since we do not rely on static WCET analysis),
which makes it readily applicable in many contexts and with
a low barrier to entry. Second, our toolchain embraces the
inherent platform unpredictability that realistically cannot be
avoided on contemporary commodity hardware by reporting
margins instead of guarantees. Specifically, instead of providing
a simplistic “yes/no” result, the toolchain performs a weakly
hard sensitivity analysis that determines the strongest still-
satisfied weakly hard real-time constraint (across the entire
task set) as a function of increasing maximum execution times.

For example, after compiling a given task set and and
profiling it on the deployment platform, the toolchain might
report that (i) no deadlines will be missed assuming the
observed WCET estimates, (ii) one deadline miss cannot be
ruled out if WCETs increase by, say, 30%, (iii) two deadline
misses cannot be ruled out if WCETs increase by 43%,
(iv) three deadline misses cannot be ruled out if WCETs
increase by 61%, and so on. Pragmatically speaking, such
output is much more useful to an engineer than a simple “yes/no”
schedulability result, or a single response-time bound based
on uncertain WCET estimates, because it provides insight into
the system’s robustness, i.e., a quantitative assessment of the
margin of error in the reported timing properties. Especially
given that many embedded real-time systems can typically
tolerate “a few” deadline misses (e.g., this is true for most
control systems), it can be highly valuable to learn that an
unexpected WCET increase by X% will result in no more
than Y deadline misses (across a configurable window of ki
consecutive invocations for each task ⌧i).

In addition to the practical aspects of the proposed toolchain—
which is freely available1 as an open-source project and
distributed as a Docker container—this paper makes two
algorithmic contributions to the state of the art. First, we provide
a uniprocessor schedulability test for Timed C programs that
realize a set of periodic generalized multiframe tasks (GMF) [5]
scheduled by a non-preemptive job-level fixed-priority (JLFP)

1https://github.com/timed-c/end-to-end-toolchain

scheduling algorithm, which is obtained by extending a recent
schedulability test [30] for independent non-preemptive jobs
to support precedence constraints and the forced abortion of
jobs (which is needed for a key feature of Timed C, namely
“firm timing points,” as discussed in Section II-A).

Second, we provide the first sensitivity analysis for weakly
hard real-time systems, which yields a WCET margin for
the strongest still-satisfied (M,K) specification, that is, the
largest factor by which all WCET estimates can be scaled
while missing at most M = m1 + . . .+mN deadlines across
all N tasks w.r.t. a set K = {k1, . . . , kN} of user-configurable
windows of interest of ki jobs each.

II. BACKGROUND AND SYSTEM MODEL

This section provides a brief introduction to Timed C, its
key features (Section II-A), and then defines a system model
to represent a wide class of Timed C programs (Section II-B).

A. The Timed C Language
Timed C [31] is a recently introduced programming language

that is designed to expose fine-grained control of program
timing to application programmers. In particular, it offers a set
of temporal and concurrent constructs with a clear temporal
semantics at the language level that enable programmers to
easily detect and react to transient overruns at the granularity
of individual blocks. For instance, Timed C provides a safe
construct for interrupting and aborting the execution of a
given code fragment when, for any reason, it does not finish
by its deadline. These features empower the programmer to
have precise control of the timing of I/O interactions, making
Timed C a good alternative for embedded real-time systems.

Timed C uses the concept of timing points to let the
programmer express and combine various timing constraints as
first-class constructs. The current implementation of the Timed
C language provides programmers with two types of timing
point primitives: (i) soft timing points and (ii) firm timing
points. A soft timing point (STP) is specified as

stp(expr1, expr2, n)

2
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Timing Analysis (Section III)

Timed C

Code

Execute

on target

platform
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Job set
Job set

generator

Instrumented

Code

Schedulability
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Schedulability 
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Sensitivity

Analysis

Not schedulable

Schedulable with 
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Sensitivity Analysis (Section V)

Schedulability Analysis (Section IV)

Fig. 1: Overview of the proposed end-to-end toolchain for Timed C. The overall methodology and toolchain consists of three main parts: a
measurement-based WCET analysis that automatically instruments and profiles the real-time program on the target platform (Section III), an
exact schedualbility analysis (Section IV), followed by a sensitivity analysis (Section V), which iteratively searches for boundaries in the
space of task set parameters for which the system exhibits a varying number of deadline misses.

translates to “plain” C) that allows for dynamic execution-time
measurements (since we do not rely on static WCET analysis),
which makes it readily applicable in many contexts and with
a low barrier to entry. Second, our toolchain embraces the
inherent platform unpredictability that realistically cannot be
avoided on contemporary commodity hardware by reporting
margins instead of guarantees. Specifically, instead of providing
a simplistic “yes/no” result, the toolchain performs a weakly
hard sensitivity analysis that determines the strongest still-
satisfied weakly hard real-time constraint (across the entire
task set) as a function of increasing maximum execution times.

For example, after compiling a given task set and and
profiling it on the deployment platform, the toolchain might
report that (i) no deadlines will be missed assuming the
observed WCET estimates, (ii) one deadline miss cannot be
ruled out if WCETs increase by, say, 30%, (iii) two deadline
misses cannot be ruled out if WCETs increase by 43%,
(iv) three deadline misses cannot be ruled out if WCETs
increase by 61%, and so on. Pragmatically speaking, such
output is much more useful to an engineer than a simple “yes/no”
schedulability result, or a single response-time bound based
on uncertain WCET estimates, because it provides insight into
the system’s robustness, i.e., a quantitative assessment of the
margin of error in the reported timing properties. Especially
given that many embedded real-time systems can typically
tolerate “a few” deadline misses (e.g., this is true for most
control systems), it can be highly valuable to learn that an
unexpected WCET increase by X% will result in no more
than Y deadline misses (across a configurable window of ki
consecutive invocations for each task ⌧i).

In addition to the practical aspects of the proposed toolchain—
which is freely available1 as an open-source project and
distributed as a Docker container—this paper makes two
algorithmic contributions to the state of the art. First, we provide
a uniprocessor schedulability test for Timed C programs that
realize a set of periodic generalized multiframe tasks (GMF) [5]
scheduled by a non-preemptive job-level fixed-priority (JLFP)

1https://github.com/timed-c/end-to-end-toolchain

scheduling algorithm, which is obtained by extending a recent
schedulability test [30] for independent non-preemptive jobs
to support precedence constraints and the forced abortion of
jobs (which is needed for a key feature of Timed C, namely
“firm timing points,” as discussed in Section II-A).

Second, we provide the first sensitivity analysis for weakly
hard real-time systems, which yields a WCET margin for
the strongest still-satisfied (M,K) specification, that is, the
largest factor by which all WCET estimates can be scaled
while missing at most M = m1 + . . .+mN deadlines across
all N tasks w.r.t. a set K = {k1, . . . , kN} of user-configurable
windows of interest of ki jobs each.

II. BACKGROUND AND SYSTEM MODEL

This section provides a brief introduction to Timed C, its
key features (Section II-A), and then defines a system model
to represent a wide class of Timed C programs (Section II-B).

A. The Timed C Language
Timed C [31] is a recently introduced programming language

that is designed to expose fine-grained control of program
timing to application programmers. In particular, it offers a set
of temporal and concurrent constructs with a clear temporal
semantics at the language level that enable programmers to
easily detect and react to transient overruns at the granularity
of individual blocks. For instance, Timed C provides a safe
construct for interrupting and aborting the execution of a
given code fragment when, for any reason, it does not finish
by its deadline. These features empower the programmer to
have precise control of the timing of I/O interactions, making
Timed C a good alternative for embedded real-time systems.

Timed C uses the concept of timing points to let the
programmer express and combine various timing constraints as
first-class constructs. The current implementation of the Timed
C language provides programmers with two types of timing
point primitives: (i) soft timing points and (ii) firm timing
points. A soft timing point (STP) is specified as

stp(expr1, expr2, n)
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all N tasks w.r.t. a set K = {k1, . . . , kN} of user-configurable
windows of interest of ki jobs each.

II. BACKGROUND AND SYSTEM MODEL

This section provides a brief introduction to Timed C, its
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that is designed to expose fine-grained control of program
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semantics at the language level that enable programmers to
easily detect and react to transient overruns at the granularity
of individual blocks. For instance, Timed C provides a safe
construct for interrupting and aborting the execution of a
given code fragment when, for any reason, it does not finish
by its deadline. These features empower the programmer to
have precise control of the timing of I/O interactions, making
Timed C a good alternative for embedded real-time systems.

Timed C uses the concept of timing points to let the
programmer express and combine various timing constraints as
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Modern Systems with Many Processor Platforms

Modern aircraft have many computer controlled systems 
• Engine control 
• Electric power control 
• Radar system 
• Navigation system 
• Flight control 
• Environmental control system 
etc… 

Modern cars have many ECU (Electronic Control Units)   
• Airbag control 
• Door control 
• Electric power steering control 
• Power train control 
• Speed control 
• Battery management. 
etc.. Over 80 ECUs in a high-end model (Albert and Jones, 2010) 

Automotive

Aerospace
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Programming Mixed Critical and 
Weakly Hard Real-Time Systems: 

It's about time
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Mixed-Criticality Systems

Issues with too many processors 
• High cost  
• Space and weight  
• Energy consumption

Federated Approach 
Each processor has its own task

Consolidate into fewer processors

Task Processor 
Platform

Required for Safety 
• Spatial isolation between tasks  
• Temporal isolation between tasks 

(necessary to meet deadlines)
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Mixed-Criticality Systems

Consolidate into fewer processors

Required for Safety 
• Spatial isolation between tasks  
• Temporal isolation between tasks 

(necessary to meet deadlines)

Mixed-Criticality Challenge 
Reconcile the conflicting requirements of:  
• Partitioning (for safety) 
• Sharing (for efficient resource usage) 
(Burns & Davis, 2013)

…but such safety requirements are only needed for highly critical tasks

Issues with too many processors 
• High cost  
• Space and weight  
• Energy consumption

Federated Approach 
Each processor has its own task
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Hardware and Compiler Solutions

FlexPRET 
Softcore

Fine-grained Multithreaded Processor Platform 
(thread interleaved) implemented on an FPGA

Flexible schedule (1 to 8 active threads) and 
scheduling frequency (1, 1/2, 2/3, 1/4, 1/8 etc.)

Hard real-time threads (HRTT) with predictable 
timing behavior 
• Thread-interleaved pipleine (no pipeline 

hazards) 
• Scratchpad memory instead of cache

Soft real-time threads (SRTT) 
with cycle stealing from HRTT

WCET-Aware  
Scratchpad  

Memory (SPM)  
Management

Automatic DMA transfer 
of code to SPM

Optimal mapping 
for minimizing 
WCET

Zimmer, Broman, Shaver, 
and Lee  (RTAS 2014)

Kim, Broman, Cai, and 
Shrivastava   
(RTAS 2014, TECS 2017)
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Conclusions

Thanks for listening!

Some key take away points:

• Timed C is an experimental research language, with the 
design goals of simplicity, portability, and correctness

• An (m,k)-sensitivity analysis is potentially a practical  
alternative to exact (sometimes impossible) timing analysis
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• FlexPRET and Software Managed Scratchpad Memories are 
potential approaches to achieve better timing predictability
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